Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Nurziana Ngah, Nuriah Mohamad, Musa Ahmad and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.138$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(2-Hydroxyphenyl)ethanone benzoylhydrazone

In the title compound, the planes of the phenyl and 2-(1iminoethyl)phenol fragments form dihedral angles of 28.18 (11) and $28.51(11)^{\circ}$, respectively, with the central $-\mathrm{N}-\mathrm{C}(=\mathrm{O})-$ fragment. The molecule is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which form a onedimensional chain parallel to the a axis.

Comment

The title compound, (I), is the product of the condensation reaction of benzhydrazide with 2-hydroxyacetophenone. Like many benzoylhydrazone derivatives, the molecule exists in the keto tautomeric form (Fig. 1).

(I)

The phenyl (C1-C6), 2-(1-imino-ethyl)phenol (C10-C15/ $\mathrm{O} 2 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{N} 2$) and $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{O} 1$ framents are each planar, with maximum deviations of 0.011 (2) \AA for atoms C3 and C6. The geometric parameters of the molecule are in normal ranges (Allen et al., 1987) and in agreement with other benzoylhydrazone compounds, such as 1-(4-fluoro-2-hydroxyphenyl)ethanone 4-nitrobenzoylhydrazone (Ali et al., 2004).

The molecule of (I) resembles an asymmetric wing. The planes of the phenyl and 2-(1-imino-ethyl)phenol fragments form dihedral angles of 28.18 (11) and $28.51(11)^{\circ}$, respectively, with the central $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{O} 1$ fragment. The dihedral angle

Figure 1
The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
between the phenyl and 2-(1-imino-ethyl)phenol groups is 11.15 (10) ${ }^{\circ}$.

There are two intramolecular $\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 2$ and $\mathrm{C} 9-$ $\mathrm{H} 9 A \cdots \mathrm{~N} 1$ hydrogen bonds. In the crystal structure, the molecules are stabilized by intermolecular $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{1}$ hydrogen bonds (symmetry code given in Table 2) to form a one-dimensional chain parallel to the a axis (Fig. 2).

Experimental

An equimolar mixture of benzhydrazide (10 mmol) and 2-hydroxyphenylacetophenone (10 mmol) in ethanol was refluxed in a twonecked round-bottomed flask for 2 h . The solution was then filtered to remove some undissolved solids. Colourless crystals of (I) were obtained in the filtrate after 1 h of evaporation at room temperature (yield 90%; m.p. $446-447 \mathrm{~K}$). Analysis, calculated: C 70.84, H 5.55, N 11.02 , O 12.59%; found: C 69.92 , H 5.60 , N 11.00 , O 12.38%.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=254.28$
Monoclinic, $P 2_{1} / n$
$a=4.9110(18) \AA$
$b=12.466(4) \AA$
$c=21.018(7) \AA$
$\beta=91.299(6)$
$V=1286.4(8) \AA^{\circ}$
$Z=4$

$$
D_{x}=1.313 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=254.28$
Monoclinic, $P 2_{1} / n$
$b=12.466$ (4) \AA
$c=21.018$ (7) A
$V=1286.4(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 1000 reflections
$\theta=1.9-26.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.43 \times 0.22 \times 0.19 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-	2662 independent reflections
detector diffractometer	2342 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.030$
Absorption correction: multi-scan	$\theta_{\max }=26.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996$)$	$h=-6 \rightarrow 6$
$T_{\min }=0.964, T_{\max }=0.985$	$k=-15 \rightarrow 15$
13472 measured reflections	$l=-26 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.138$
$S=1.24$
2662 reflections
180 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0477 P)^{2}\right. \\
& +0.3287 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.15 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e}^{-3} \\
& \text { Extinction correction: none }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C7	$1.227(2)$	$\mathrm{N} 2-\mathrm{N} 1$	$1.387(2)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.285(2)$	$\mathrm{C} 7-\mathrm{N} 1$	$1.350(2)$
C1-C6-C7-O1	$150.85(18)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 7$	$-158.92(16)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$10.0(3)$		

Figure 2
A packing diagram for (I), viewed down the b axis. Dashed lines denote $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1$ hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 2$	$0.82(3)$	$1.81(3)$	$2.545(2)$	$148(3)$
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~N} 1$	0.96	2.36	$2.792(3)$	107
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$2.10(2)$	$2.919(2)$	$165(2)$

Symmetry code: (i) $x-1, y, z$.

All H atoms were located in a difference map. Atoms H1B and $\mathrm{H} 2 A$ were refined isotropically. All other H atoms were positioned geometrically and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH and $1.5_{\mathrm{eq}}(\mathrm{C})$ for CH_{3}.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Ali, H., Khamis, N. A. \& Yamin, B. M. (2004). Acta Cryst. E60, o1873-o1874. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

